Loading…
Design of precursors and pH factors for enhancing the performance of nickel-based catalysts for anion exchange membrane water electrolysis
[Display omitted] •Optimized precursor selection and pH for maximum yield and performance of Ni(OH)2.•Examined the impact of key synthesis factors on NiO properties.•N-NCO-based single-cell reached 1.38 A/cm2 at 1.8 Vcell with 23 mV/kh degradation for 300 h. In response to the escalating global ener...
Saved in:
Published in: | Electrochemistry communications 2025-01, Vol.170, p.107851, Article 107851 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•Optimized precursor selection and pH for maximum yield and performance of Ni(OH)2.•Examined the impact of key synthesis factors on NiO properties.•N-NCO-based single-cell reached 1.38 A/cm2 at 1.8 Vcell with 23 mV/kh degradation for 300 h.
In response to the escalating global energy crisis and climate change, green hydrogen is increasingly recognized as a clean energy solution. This study presents an innovative approach to enhance the performance of nickel-based catalysts for anion exchange membrane water electrolysis (AEMWE) through careful selection of precursor materials and pH optimization in the co-precipitation process. By optimizing precursor types and pH conditions during co-precipitation synthesis, we achieved high yields of Ni(OH)2, which were then thermally treated to form NiO. Notably, the nitrate-based NiO (N-NiO) exhibited superior catalytic activity and durability, attributed to its favorable microstructure and charge transfer capabilities. In addition, to verify universality of the N-NiO study and to assess the water electrolysis performance, we synthesized a binary compound, nickel–cobalt oxide (NCO), by incorporating Co, and evaluated its electrochemical performance in an AEMWE single-cell system. The nitrate-based NCO-based single-cell achieved a high current density of 1.38 A/cm2 at 1.8 Vcell in 1 M KOH at 50 °C, with a low degradation rate of 23 mV/kh at 1 A/cm2 for 300 h. These findings provide valuable insights into the optimization of catalyst properties for hydrogen production and highlight significant commercial potential for hydrogen production and other electrochemical applications. |
---|---|
ISSN: | 1388-2481 |
DOI: | 10.1016/j.elecom.2024.107851 |