Loading…
New conjectures on perfect matchings in cubic graphs
We propose three new conjectures on perfect matchings in cubic graphs. The weakest conjecture is implied by a well-known conjecture of Berge and Fulkerson. The other two conjectures are a strengthening of the first one. All conjectures are trivially verified for 3-edge-colorable cubic graphs and by...
Saved in:
Published in: | Electronic notes in discrete mathematics 2013-05, Vol.40, p.235-238 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose three new conjectures on perfect matchings in cubic graphs. The weakest conjecture is implied by a well-known conjecture of Berge and Fulkerson. The other two conjectures are a strengthening of the first one. All conjectures are trivially verified for 3-edge-colorable cubic graphs and by computer for all snarks of order at most 34. |
---|---|
ISSN: | 1571-0653 1571-0653 |
DOI: | 10.1016/j.endm.2013.05.042 |