Loading…
Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms
Organic Rankine cycle (ORC) can improve engine power by recovering exhaust energy. This paper co-optimizes the engine-ORC combined system's power and NOx emission, with decision variables of the engine's excess air ratio, spark advance angle, as well as ORC's pump and expander speeds....
Saved in:
Published in: | Energy (Oxford) 2024-02, Vol.289, p.130072, Article 130072 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic Rankine cycle (ORC) can improve engine power by recovering exhaust energy. This paper co-optimizes the engine-ORC combined system's power and NOx emission, with decision variables of the engine's excess air ratio, spark advance angle, as well as ORC's pump and expander speeds. Firstly, a simulation model of the combined system is established and validated. Then, the initial dataset is generated by the D-optimum Latin hypercube method and simulation model. The artificial neural network (ANN) prediction models of NOx emission and power are established based on these datasets. Finally, the co-optimization is conducted using the ANN prediction model and genetic algorithm. Focusing on maximizing the combined system's power results in an 18.30 % increase in power, and a significant reduction in brake-specific fuel consumption (BSFC) and brake-specific NOx (BSNOx) by 10.10 % and 71.30 %, respectively, compared to the unoptimized basis. Targeting the lowest BSNOx leads to a limited 1.20 % increase in power output; however, it results in a 19.50 % increase in BSFC. When optimizing for both system output and BSNOx, the output remains 13.5 % above the unoptimized basis. Meanwhile, up to 89.8 % of BSNOx can be eliminated with negligible deterioration in BSFC. This study could be used for engine performance enhancements.
•A data-driven ANN prediction model of engine-ORC combined system is established.•ANN cooperates with GA to co-optimize Combined system's power and NOx emission.•The optimum engine and ORC parameters for the different goals are obtained. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2023.130072 |