Loading…

A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis

Krill herd (KH) algorithm is a novel swarm-based optimization algorithm that imitates krill herding behavior during the searching for foods. It has been successfully used in solving many complex optimization problems. The potency of this algorithm is very high because of its superior performance com...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2018-08, Vol.73, p.111-125
Main Authors: Abualigah, Laith Mohammad, Khader, Ahamad Tajudin, Hanandeh, Essam Said
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Krill herd (KH) algorithm is a novel swarm-based optimization algorithm that imitates krill herding behavior during the searching for foods. It has been successfully used in solving many complex optimization problems. The potency of this algorithm is very high because of its superior performance compared with other optimization algorithms. Hence, the applicability of this algorithm for text document clustering is investigated in this work. Text document clustering refers to the method of clustering an enormous amount of text documents into coherent and dense clusters, where documents in the same cluster are similar. In this paper, a combination of objective functions and hybrid KH algorithm, called, MHKHA, is proposed to solve the text document clustering problem. In this version, the initial solutions of the KH algorithm are inherited from the k-mean clustering algorithm and the clustering decision is based on two combined objective functions. Nine text standard datasets collected from the Laboratory of Computational Intelligence are used to evaluate the performance of the proposed algorithms. Five evaluation measures are employed, namely, accuracy, precision, recall, F-measure, and convergence behavior. The proposed versions of the KH algorithm are compared with other well-known clustering algorithms and other thirteen published algorithms in the literature. The MHKHA obtained the best results for all evaluation measures and datasets used among all the clustering algorithms tested.
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2018.05.003