Loading…
On the solution of unstable fracture problems with non-linear cohesive laws
Fracture mechanics models have well-known numerical challenges when implemented within implicit quasi-static frameworks once the cumulative internal energy exceeds the capacity for dissipation through the fracture process. Although this finding has been mainly reported for linear softening traction-...
Saved in:
Published in: | Engineering fracture mechanics 2024-01, Vol.295, p.109736, Article 109736 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fracture mechanics models have well-known numerical challenges when implemented within implicit quasi-static frameworks once the cumulative internal energy exceeds the capacity for dissipation through the fracture process. Although this finding has been mainly reported for linear softening traction-separation laws, this work comprehensively explores non-linear softening behaviours and proposes a more general instability criterion. The ratio of cohesive to internal power emerges as a crucial factor. As a result, even scenarios involving a single cohesive element undergoing monotonic loading may exhibit a limit point at any stage of crack propagation, not just during crack initiation. Two strategies for handling fracture problems with instabilities within an implicit solution are discussed: an arc-length technique and an extension of quasi-static formulation into a dynamic regime. A comparative assessment is performed, covering both simple single-element cases and more complex scenarios. Furthermore, the study delves into more intricate material responses, including transformation-induced plasticity effects. Notably, incorporating these dissipative phenomena in the bulk material mitigates the difficulties associated with snap-back-like behaviours.
•Unstable fracture problems within implicit quasi-static frameworks are studied.•A new instability criterion is proposed for non-linear softening laws.•Two strategies for handling fracture problems with instabilities are compared.•Single-element tests and more complex cases are used to show the differences.•The impact of intricate material constitutive models on fracture is examined. |
---|---|
ISSN: | 0013-7944 1873-7315 |
DOI: | 10.1016/j.engfracmech.2023.109736 |