Loading…
A Framework to Generate Synthetic Multi-label Datasets
A controlled environment based on known properties of the dataset used by a learning algorithm is useful to empirically evaluate machine learning algorithms. Synthetic (artificial) datasets are used for this purpose. Although there are publicly available frameworks to generate synthetic single-label...
Saved in:
Published in: | Electronic notes in theoretical computer science 2014-02, Vol.302, p.155-176 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A controlled environment based on known properties of the dataset used by a learning algorithm is useful to empirically evaluate machine learning algorithms. Synthetic (artificial) datasets are used for this purpose. Although there are publicly available frameworks to generate synthetic single-label datasets, this is not the case for multi-label datasets, in which each instance is associated with a set of labels usually correlated. This work presents Mldatagen, a multi-label dataset generator framework we have implemented, which is publicly available to the community. Currently, two strategies have been implemented in Mldatagen: hypersphere and hypercube. For each label in the multi-label dataset, these strategies randomly generate a geometric shape (hypersphere or hypercube), which is populated with points (instances) randomly generated. Afterwards, each instance is labeled according to the shapes it belongs to, which defines its multi-label. Experiments with a multi-label classification algorithm in six synthetic datasets illustrate the use of Mldatagen. |
---|---|
ISSN: | 1571-0661 1571-0661 |
DOI: | 10.1016/j.entcs.2014.01.025 |