Loading…
Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia
Emissions reductions in upwind areas can influence the PM2.5 concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM2.5 precursor controls on changes in downwind PM2.5 concentrations. In this study, we analyzed the overall impact of PM2.5...
Saved in:
Published in: | Environmental pollution (1987) 2021-01, Vol.268, p.115794, Article 115794 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emissions reductions in upwind areas can influence the PM2.5 concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM2.5 precursor controls on changes in downwind PM2.5 concentrations. In this study, we analyzed the overall impact of PM2.5 precursor emission controls in upwind areas on PM2.5 in downwind areas with two types of impacts: “direct impact” and “cross impact.” The former refers to PM2.5 changes in downwind areas due to the transported PM2.5 itself, whereas the latter represents PM2.5 changes due to reactions between the transported gaseous precursors and intermediates (i.e., HNO3) originating from upwind areas and locally emitted precursors (i.e. NH3) in the downwind areas. As a case study, we performed air quality modeling for Northeast Asia for January 15–17, 2016 by setting China and South Korea as the upwind and downwind areas, respectively. To account for potential spatiotemporal variations in NH3 emissions in downwind areas, we considered two NH3 conditions. When NOx emissions in China were reduced by 35%, in downwind areas the PM2.5 concentrations decreased by 2.2 μg/m3 under NH3-rich conditions, while PM2.5 concentrations increased by 2.3 μg/m3 under NH3-poor conditions. The direct impact increased by 4.0 μg/m3 in both cases due to upwind NOx disbenefit effects. However, the cross impacts led to a PM2.5 decrease of 6.2 μg/m3 under NH3-rich conditions versus a PM2.5 increase of 1.7 μg/m3 under NH3-poor conditions. We noted that PM2.5 concentrations in the downwind areas may not improve unless a cross impact outweighs a direct impact. This may be one of the reasons why South Korea PM2.5 concentrations have not declined despite efforts by China to reduce their PM2.5 precursor emissions.
[Display omitted]
•Upwind NOx condition changed the ratio of NO3− and HNO3 being transported.•NOx reduction in high NOx upwind area increased direct long-range transport of NO3−.•Downwind NH3 availability affected additional conversion of transported HNO3 to NO3−.•The cross impact outweighs the direct impact in NH3-rich downwind areas.•Direct NO3− transport increased the overall impact over NH3-poor downwind areas. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2020.115794 |