Loading…
Objective ranges of soil-to-dust transfer coefficients for lead-impacted sites
Residential yard soil and indoor dust datasets from eight communities near historical mining, smelting, and refining operations were used to quantify soil track-in, an important factor in evaluating indoor exposures to soil metals and to set residential soil cleanup levels. Regression analyses were...
Saved in:
Published in: | Environmental research 2020-05, Vol.184, p.109349, Article 109349 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Residential yard soil and indoor dust datasets from eight communities near historical mining, smelting, and refining operations were used to quantify soil track-in, an important factor in evaluating indoor exposures to soil metals and to set residential soil cleanup levels. Regression analyses were used to derive slopes that represent mass soil-to-dust transfer coefficients or MSDs. Lead concentration data were available for all datasets. Arsenic data were available for six of the eight datasets. Cadmium and zinc data were available for one dataset, allowing limited comparison of MSDs for lead with other metals. Covariates that could indicate potential indoor sources of metals, such as house age and indoor heating source, were examined by multivariate regression analysis when available (three datasets). Covariates that could affect soil track-in, such as the amount of bare soil in the yard or having pets, were examined by stratified linear regression analysis when available (two datasets). Most of the R-squared values for lead, cadmium and zinc indicate a good to moderate fit (≥0.25), but for arsenic most indicate a poor fit ( |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2020.109349 |