Loading…

Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism

Cratonic lithosphere is believed to have been chemically buoyant and mechanically resistant to destruction over billions of years. Yet the absence of cratonic roots at some Archean terrains casts doubt on the craton stability and longevity on a global scale. As unique mantle-derived melts at ancient...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2020-11, Vol.550, p.116549, Article 116549
Main Authors: Sun, Chenguang, Dasgupta, Rajdeep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cratonic lithosphere is believed to have been chemically buoyant and mechanically resistant to destruction over billions of years. Yet the absence of cratonic roots at some Archean terrains casts doubt on the craton stability and longevity on a global scale. As unique mantle-derived melts at ancient continents, silica-poor, kimberlitic melts are ideal tools to constrain the temporal variation of lithosphere thickness and the processes affecting the lithosphere root. However, no reliable thermobarometer exists to date for strongly silica-undersaturated, mantle-derived melts. Here we develop a new thermobarometer for silica-poor, CO2-rich melts using high-temperature, high-pressure experimental data. Our barometer is calibrated based on a new observation of pressure-dependent variation of Al2O3 in partial melts saturated with garnet and olivine, while our thermometer is calibrated based on the well-known olivine-melt Mg-exchange. For applications to natural magmas, we also establish a correction scheme to estimate their primary melt compositions. Applying this liquid-based thermobarometer to the estimated primary melt compositions for a global kimberlite dataset, we show that the equilibration depths between primary kimberlite melts and mantle peridotites indicate a decrease of up to ∼150 km in cratonic lithosphere thickness globally during the past ∼2 Gyr. Together with the temporal coupling between global kimberlite frequency and cold subduction flux since ∼2 Gyr ago, our results imply a causal link between lithosphere thinning and supply of CO2-rich melts enhanced by deep subduction of carbonated oceanic crusts. While hibernating at the lithosphere root, these melts chemically metasomatize and rheologically weaken the rigid lithosphere and consequently facilitate destruction through convective removal in the ambient mantle or thermo-magmatic erosion during mantle plume activities. •A new thermobarometer is constructed for CO2-rich, silica-poor mantle melts.•Application to global kimberlites constrains the cratonic lithosphere thickness.•Cratonic lithosphere thickness decreases by up to ∼150 km over the past ∼2 Gyr.•Increasing flux of deep C subduction enhances CO2-rich melt input at cratonic roots.•Hibernating CO2-rich melts destabilize cratonic lithosphere through time.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2020.116549