Loading…
Almost affinely disjoint subspaces
In this work, we introduce a natural notion concerning finite vector spaces. A family of k-dimensional subspaces of Fqn, which forms a partial spread, is called almost affinely disjoint if any (k+1)-dimensional subspace containing a subspace from the family non-trivially intersects with only a few s...
Saved in:
Published in: | Finite fields and their applications 2021-10, Vol.75, p.101879, Article 101879 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we introduce a natural notion concerning finite vector spaces. A family of k-dimensional subspaces of Fqn, which forms a partial spread, is called almost affinely disjoint if any (k+1)-dimensional subspace containing a subspace from the family non-trivially intersects with only a few subspaces from the family. The central question discussed in the paper is the polynomial growth (in q) of the maximal cardinality of these families given the parameters k and n. For the cases k=1 and k=2, optimal families are constructed. For other settings, we find lower and upper bounds on the polynomial growth. Additionally, some connections with problems in coding theory are shown. |
---|---|
ISSN: | 1071-5797 1090-2465 |
DOI: | 10.1016/j.ffa.2021.101879 |