Loading…
On the boomerang uniformity of permutations of low Carlitz rank
Finding permutation polynomials with low differential and boomerang uniformity is an important topic in S-box designs of many block ciphers. For example, AES chooses the inverse function as its S-box, which is differentially 4-uniform and boomerang 6-uniform. Also there has been considerable researc...
Saved in:
Published in: | Finite fields and their applications 2022-08, Vol.81, p.102033, Article 102033 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finding permutation polynomials with low differential and boomerang uniformity is an important topic in S-box designs of many block ciphers. For example, AES chooses the inverse function as its S-box, which is differentially 4-uniform and boomerang 6-uniform. Also there has been considerable research on many non-quadratic permutations which are modifications of the inverse function. In this paper, we give a novel approach which shows that plenty of existing modifications of the inverse function are in fact affine equivalent to permutations of low Carlitz rank, and those modifications cannot be APN. We also present the complete list of permutations of Carlitz rank 3 having the boomerang uniformity six, and give the complete classification of the differential uniformities of permutations of Carlitz rank 3. As an application, we provide all the involutions of Carlitz rank 3 having the boomerang uniformity six. |
---|---|
ISSN: | 1071-5797 1090-2465 |
DOI: | 10.1016/j.ffa.2022.102033 |