Loading…
Codes over a ring of order 32 with two Gray maps
We describe a ring of order 32 and prove that it is a local Frobenius ring. We study codes over this ring and we give two distinct non-equivalent linear orthogonality-preserving Gray maps to the binary space. Self-dual codes are studied over this ring as well as the binary self-dual codes that are t...
Saved in:
Published in: | Finite fields and their applications 2024-03, Vol.95, p.102384, Article 102384 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a ring of order 32 and prove that it is a local Frobenius ring. We study codes over this ring and we give two distinct non-equivalent linear orthogonality-preserving Gray maps to the binary space. Self-dual codes are studied over this ring as well as the binary self-dual codes that are the Gray images of those codes. Specifically, we show that the image of a self-dual code over this ring is a binary self-dual code with an automorphism consisting of 2n transpositions for the first map and n transpositions for the second map. We relate the shadows of binary codes to additive codes over the ring. As Gray images of codes over the ring, binary self-dual [70,35,12] codes with 91 distinct weight enumerators are constructed for the first time in the literature. |
---|---|
ISSN: | 1071-5797 1090-2465 |
DOI: | 10.1016/j.ffa.2024.102384 |