Loading…

Experimental investigation on the fire performance of wood bio-concrete using Cone Calorimeter

Nowadays, wood bio-concrete (WBC) can be seen as an alternative to reduce environmental impacts of the construction industry. The behavior of this material under fire conditions, however, is still poorly understood. In this sense, this work aims to investigate the behavior of wood bio-concrete under...

Full description

Saved in:
Bibliographic Details
Published in:Fire safety journal 2024-09, Vol.148, p.104225, Article 104225
Main Authors: Aguiar, Amanda L.D., Gomes, Bruno M.C., Nascimento, Monique A.F.R., Landesmann, Alexandre, Toledo Filho, Romildo D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, wood bio-concrete (WBC) can be seen as an alternative to reduce environmental impacts of the construction industry. The behavior of this material under fire conditions, however, is still poorly understood. In this sense, this work aims to investigate the behavior of wood bio-concrete under fire conditions. In this study, the wood shavings content varied from 40 to 90 %. A Mass Loss Cone Calorimeter with an incident heat flux of 50 kW/m2 was used to analyze the combustion and reaction to fire of WBCs. Then, properties such as heat release rate, total heat released, total mass loss, mass loss rate, effective heat of combustion, time to ignition and temperature of ignition were evaluated. Thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were used to better explain the results from the Cone Calorimeter tests. The results showed that the cementitious matrix promoted the protection of the wood and no ignition was observed for the materials studied, excepted when 90 % of shavings were used. The lower the density of the bio-concrete, the higher the values of combustion properties. This study confirmed that, under high heat flux conditions, most of the WBCs did not exhibit characteristics that promote ignition or flame propagation.
ISSN:0379-7112
DOI:10.1016/j.firesaf.2024.104225