Loading…

Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan

The effect of Na+, K+ and Ca2+ cations on the thermal stability and aggregation of kappa carrageenan double helices has been explored by differential scanning calorimetry (DSC). Previous studies have shown that kappa carrageenan helices bind K+ cations, but not Na+. The kappa carrageenan used in thi...

Full description

Saved in:
Bibliographic Details
Published in:Food hydrocolloids 2019-01, Vol.86, p.141-145
Main Authors: Evageliou, Vasiliki I., Ryan, Patricia M., Morris, Edwin R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of Na+, K+ and Ca2+ cations on the thermal stability and aggregation of kappa carrageenan double helices has been explored by differential scanning calorimetry (DSC). Previous studies have shown that kappa carrageenan helices bind K+ cations, but not Na+. The kappa carrageenan used in this work was therefore in the Na+ salt form, to avoid complications from site-bound counterions to the polymer, and was studied at a fixed concentration of 1.0 wt % (∼25 mN w.r.t. sulfate groups). Na+, K+ and Ca2+ cations were added as chloride salts. Values of peak-maximum temperature (Tmax) in DSC cooling and heating scans (0.5 °C/min) increased progressively with increasing salt concentration, following the order Na+< Ca2+< K+, but greatest thermal hysteresis was seen with Ca2+. Our proposed interpretation is that Ca2+ cations "cement" the carrageenan helices together by binding directly between them, giving greater thermal stability, and thus greater hysteresis, than K+ cations which act indirectly by suppressing charge. On progressive addition of NaCl or KCl to solutions incorporating Ca2+ at concentrations of 5 mM or 12.5 mM (stoichiometric equivalence) the values of Tmax moved asymptotically towards those seen for the same concentrations of the monovalent cations in the absence of calcium, suggesting progressive displacement of site-bound Ca2+. Thus Tmax for the order–disorder transition was increased by KCl but reduced by NaCl, with the strange consequence that addition of NaCl lowered the transition temperature rather than raising it. [Display omitted] •Site-binding of calcium cations between kappa carrageenan double helices.•Consequent large hysteresis between ordering and disordering transitions in DSC.•Bound Ca2+ displaced progressively by increasing concentrations of NaCl or KCl.•KCl moves order–disorder transition towards higher temperatures seen with K+ alone .•High concentrations of NaCl lower transition temperature rather than raising it.
ISSN:0268-005X
1873-7137
DOI:10.1016/j.foodhyd.2018.03.018