Loading…
The influence of amylose and amylopectin on water retention capacity and texture properties of frozen-thawed konjac glucomannan gel
As freeze-thaw processing has become an emerging way to regulate the texture properties of the konjac glucomannan (KGM), the freezing-induced syneresis is getting increased concern in the food industry. In this study, the effects of the different types' starches (amylose and amylopectin) and th...
Saved in:
Published in: | Food hydrocolloids 2021-04, Vol.113, p.106521, Article 106521 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As freeze-thaw processing has become an emerging way to regulate the texture properties of the konjac glucomannan (KGM), the freezing-induced syneresis is getting increased concern in the food industry. In this study, the effects of the different types' starches (amylose and amylopectin) and the frozen conditions on the water retention capacity and texture properties of the frozen KGM-Starch blended gel (KS gel) were investigated. Comparing the effects of the subzero conditions and the starches on the blended gel, we found that the latter would be more powerful to affect the syneresis rate and water holding capacity of the frozen KGM gel, and a dense porous network microstructure emerged in the frozen KS gels. Research results also showed that the water holding capacity of the frozen KS gels could be significantly improved for the increased starches content, while their syneresis rate could be lowered significantly (p |
---|---|
ISSN: | 0268-005X 1873-7137 |
DOI: | 10.1016/j.foodhyd.2020.106521 |