Loading…

Emulsification performance and stabilization mechanism of okra polysaccharides with different structural properties

To systematically study the relationship between structural and emulsification properties of okra polysaccharide, OPW (okra polysaccharide extracted by water), OPH (okra polysaccharide extracted by hydrochloric acid), and OPA (okra polysaccharide extracted by alkali) were prepared, which were all Rh...

Full description

Saved in:
Bibliographic Details
Published in:Food hydrocolloids 2024-08, Vol.153, p.109997, Article 109997
Main Authors: Lv, Yue, Cai, Xiujuan, Shi, Naiwen, Gao, Hongxv, Zhang, Zhuanyuan, Yan, Mingyan, Li, Yinping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To systematically study the relationship between structural and emulsification properties of okra polysaccharide, OPW (okra polysaccharide extracted by water), OPH (okra polysaccharide extracted by hydrochloric acid), and OPA (okra polysaccharide extracted by alkali) were prepared, which were all Rhamnogalacturonan-I enriched polysaccharides. OPW and OPH showed the same glycosidic bonds, while the degree of methyl-esterification (DM) and protein content were significantly different. The molecular weight (Mw, 7304.39 kDa) and DM (6.54%) of OPA decreased significantly, while its (Gal + Ara)/Rha was the largest. OPW, OPH, and OPA were able to emulsify oil in water over a wide pH range (3–7) at low concentration, while OPA demonstrated the poorest emulsifying stability under thermal and storage conditions. The emulsifying properties of okra polysaccharides were regulated by multi-scale molecular structure. OPA, with the highest electrostatic repulsion and the longest side chain, formed the largest d4,3 (108.94 μm) and the thinnest interface layer (0.25 μm). OPW, with the highest acetyl content (6.33%) and protein content (14.04%), formed the thickest interfacial layer (0.97 μm) and a medium d4,3 (86.40 μm). OPH, with the highest DM (33.43%) and the largest Mw (8454.63 kDa), formed a medium interfacial thickness (0.83 μm) and the smallest d4,3 (72.30 μm), exhibiting the best emulsifying performance. The present results showed controlling factors for emulsifying properties of okra polysaccharide were hydrophobic groups and steric interactions, rather than electrostatic repulsion. Meanwhile, okra polysaccharides can be strong candidates for emulsification. [Display omitted] •The structural properties of three kinds of okra polysaccharides were analyzed from multiple dimensions.•The emulsification properties of okra polysaccharides under different condition were evaluated systematically.•The polysaccharide with the highest DM value and RG-I content had better emulsification performance than others.•Emulsifying property of okra polysaccharide was mainly hydrophobic groups and steric interactions.
ISSN:0268-005X
1873-7137
DOI:10.1016/j.foodhyd.2024.109997