Loading…
Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
Ventricular tachycardia (VT) and ventricular fibrillation (VFib) are the life-threatening shockable arrhythmias which require immediate attention. Cardiopulmonary resuscitation (CPR) and defibrillation are highly recommended means of immediate treatment of these shockable arrhythmias and to resume s...
Saved in:
Published in: | Future generation computer systems 2018-02, Vol.79, p.952-959 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ventricular tachycardia (VT) and ventricular fibrillation (VFib) are the life-threatening shockable arrhythmias which require immediate attention. Cardiopulmonary resuscitation (CPR) and defibrillation are highly recommended means of immediate treatment of these shockable arrhythmias and to resume spontaneous circulation. However, to increase efficacy of defibrillation by an automated external defibrillator (AED), an accurate distinction of shockable ventricular arrhythmias from non-shockable ones needs to be provided upfront. Therefore, in this work, we have proposed a novel tool for an automated differentiation of shockable and non-shockable ventricular arrhythmias from 2 s electrocardiogram (ECG) segments. Segmented ECGs are processed by an eleven-layer convolutional neural network (CNN) model. Our proposed system was 10-fold cross validated and achieved maximum accuracy, sensitivity and specificity of 93.18%, 95.32% and 91.04% respectively. Its high performance indicates that shockable life-threatening arrhythmia can be immediately detected and thus increase the chance of survival while CPR or AED-based support is performed. Our tool can also be seamlessly integrated with an ECG acquisition systems in the intensive care units (ICUs).
•Automated detection of shockable and non-shockable ECG signals.•An 11-layer convolutional neural network is employed.•Trained and tested on three public databases.•Synthetic ECG samples generated to balance the two ECG classes.•Achieved an average accuracy of 93.18% for the detection of the two classes.
[Display omitted] |
---|---|
ISSN: | 0167-739X 1872-7115 |
DOI: | 10.1016/j.future.2017.08.039 |