Loading…

Petrographic and isotopic investigations of two unusual Ca-Al-rich inclusions from primitive CO3 chondrites

We performed high-precision SIMS (secondary ion mass spectrometry) 26Al-26Mg and oxygen isotope analyses of two unique CAIs, “Mesquite” and “Y24”, found in the CO3.05 chondrites Northwest Africa 7892 and Yamato-81020, respectively. Mesquite is unusually large (∼5 × 3 mm) for a CAI from any CO chondr...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2021-03, Vol.296, p.75-96
Main Authors: Hertwig, A.T., Liu, M.-C., Brearley, A.J., Simon, S.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We performed high-precision SIMS (secondary ion mass spectrometry) 26Al-26Mg and oxygen isotope analyses of two unique CAIs, “Mesquite” and “Y24”, found in the CO3.05 chondrites Northwest Africa 7892 and Yamato-81020, respectively. Mesquite is unusually large (∼5 × 3 mm) for a CAI from any CO chondrite and exhibits a layered texture comprising a melilite-rich core surrounded by hibonite- and spinel-rich mantle layers and a semi-continuous spinel-dominated rim. The CAI Y24 stands out because of its distinct mineralogy: grossite, hibonite, and spinel are accompanied by abundant ultra-refractory-element-rich phases such as warkite, kangite, and perovskite. Silicates are absent in Y24. Negatively fractionated δ25Mg values of phases in the core and mantle layers of Mesquite suggest that the inclusion as a whole was never molten and, hence, represents an aggregate of condensates. The relatively large grain sizes of melilite in the core (up to ∼300 µm) most likely are the result of solid-state recrystallization and coarsening of melilite in the course of a heating event occurring in the solar nebula. This heating event, however, did not disturb the Al-Mg systematics of Mesquite. Regardless of their position within Mesquite and the phases analyzed, spots analyzed for Al-Mg plot on a single isochron characterized by an initial 26Al/27Al of (4.95 ± 0.08) × 10–5 and a δ26Mg*0 of –0.14 ± 0.05‰. We suggest that this initial 26Al/27Al ratio corresponds to the formation of Mesquite in the solar nebula that was slightly heterogeneous with respect to Mg isotopes. Spinel in the rim is uniform in Δ17O (∼–25‰); in contrast, hibonite in the core and mantle layers, albeit also 16O-rich, show variable oxygen isotope ratios (Δ17O ∼ –15‰ to –23‰), which would be consistent with hibonite condensation in a gas with quickly-changing oxygen isotope compositions. The 16O-poor composition of melilite (Δ17O ∼ –1‰ to 0‰) in the core could be the result of isotope exchange with an 16O-poor gas, perhaps during the heating event that caused the solid-state recrystallization and coarsening of melilite or the result of oxygen isotope exchange with a fluid on the parent body. Abundant calcite, phyllosilicates, and sodalite are witnesses to late-stage and low-temperature alteration of the Mesquite CAI; calcite and phyllosilicates most likely are of terrestrial origin, but sodalite could have formed in the parent body. Inclusion Y24 is irregularly-shaped, indicating a condensation origin. Complet
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2020.12.014