Loading…

Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture

Skim milk powder was manufactured in a milk powder plant using different preheating temperatures, concentrate heating temperatures and spray drying temperatures. Varying the preheating conditions from 70 °C for 52 s to 120 °C for 52 s had a marked effect on the denaturation of β -lactoglobulin A, β...

Full description

Saved in:
Bibliographic Details
Published in:International dairy journal 2005-05, Vol.15 (5), p.501-511
Main Authors: Oldfield, D.J., Taylor, M.W., Singh, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skim milk powder was manufactured in a milk powder plant using different preheating temperatures, concentrate heating temperatures and spray drying temperatures. Varying the preheating conditions from 70 °C for 52 s to 120 °C for 52 s had a marked effect on the denaturation of β -lactoglobulin A, β -lactoglobulin B, α -lactalbumin, bovine serum albumin (BSA), and immunoglobulin G. In contrast, varying concentrate heating temperature (65–74 °C) and inlet/outlet air dryer temperature (200/101 °C–160/89 °C) had a minimal effect on whey protein denaturation. Most of the whey protein denaturation and association with the casein micelle occurred in the preheating section of the powder plant. Aggregation of β-lactoglobulin ( β-lg) and BSA predominantly involved disulphide bonds. Although, greater than 90% of the β-lg and BSA was denatured after preheating at 120 °C for 52 s, the extent of association with the casein micelle was lower, 50% for β-lg and 75% for BSA.
ISSN:0958-6946
1879-0143
DOI:10.1016/j.idairyj.2004.09.004