Loading…
Forecasting with imprecise probabilities
We review de Finetti’s two coherence criteria for determinate probabilities: coherence1 defined in terms of previsions for a set of events that are undominated by the status quo – previsions immune to a sure-loss – and coherence2 defined in terms of forecasts for events undominated in Brier score by...
Saved in:
Published in: | International journal of approximate reasoning 2012-11, Vol.53 (8), p.1248-1261 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We review de Finetti’s two coherence criteria for determinate probabilities: coherence1 defined in terms of previsions for a set of events that are undominated by the status quo – previsions immune to a sure-loss – and coherence2 defined in terms of forecasts for events undominated in Brier score by a rival forecast. We propose a criterion of IP-coherence2 based on a generalization of Brier score for IP-forecasts that uses 1-sided, lower and upper, probability forecasts. However, whereas Brier score is a strictly proper scoring rule for eliciting determinate probabilities, we show that there is no real-valued strictly proper IP-score. Nonetheless, with respect to either of two decision rules – Γ-maximin or (Levi’s) E-admissibility-+-Γ-maximin – we give a lexicographic strictly proper IP-scoring rule that is based on Brier score. |
---|---|
ISSN: | 0888-613X 1873-4731 |
DOI: | 10.1016/j.ijar.2012.06.018 |