Loading…
Integral micromorphic model reproducing dispersion in 1D continuum
The paper develops a new integral micromorphic elastic continuum model, which can describe dispersion properties of band-gap metamaterials, i.e., metamaterials that inhibit propagation of waves in a certain frequency range. The enrichment consists in nonlocal treatment of three terms in the expressi...
Saved in:
Published in: | International journal of engineering science 2024-12, Vol.205, p.104147, Article 104147 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper develops a new integral micromorphic elastic continuum model, which can describe dispersion properties of band-gap metamaterials, i.e., metamaterials that inhibit propagation of waves in a certain frequency range. The enrichment consists in nonlocal treatment of three terms in the expression for the potential energy density of the standard micromorphic continuum. After proper calibration, such a formulation can exactly reproduce two given branches of the dispersion curve (acoustic and optical), even in cases with a band gap. The calibration process exploits Fourier images of the unknown weight functions, which are analytically deduced from the dispersion relation of the material of interest. The weight functions are then reconstructed in the spatial domain by numerical evaluation of the inverse Fourier transform. The presented approach is validated on several examples, including discrete mass–spring chains with alternating masses, for which the dispersion relation has an explicit analytical form and the optical and acoustic branches are separated by a band gap. |
---|---|
ISSN: | 0020-7225 |
DOI: | 10.1016/j.ijengsci.2024.104147 |