Loading…
Effects of fungal interaction on ochratoxin A production by A. carbonarius at different temperatures and aw
Ochratoxin A is a well-known mycotoxin produced by species of the genera Penicillium and Aspergillus. OTA-producing species from A. section Nigri are considered the source of OTA detected in grapes, dried vine fruits and wines. Other fungi present in grapes during their maturation can grow and inter...
Saved in:
Published in: | International journal of food microbiology 2006-07, Vol.110 (2), p.160-164 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ochratoxin A is a well-known mycotoxin produced by species of the genera Penicillium and Aspergillus. OTA-producing species from A. section Nigri are considered the source of OTA detected in grapes, dried vine fruits and wines. Other fungi present in grapes during their maturation can grow and interact with OTA-producing Aspergillus species and affect OTA production. In this study seven fungi (Alternaria alternata, Cladosporium herbarum, Eurotium amstelodami, Trichoderma harzianum, Penicillium decumbens, P. janthinellum and Candida sp.) disolated from grapes and dried vine fruits were grown in SNM medium paired with OTA-positive A. carbonarius at two temperatures (20 and 30 °C) and at two water activities (0.92 and 0.97). OTA production was tested after 5, 7, 10, 14 and 18 days of incubation, at four distances (1, 2, 3 and 4 cm) from A. carbonarius inoculation point in the inter-colony axis. At 0.92 aw OTA production was almost negligible. At 0.97 aw and 30 °C OTA accumulation was reduced when A. carbonarius was grown in paired cultures, particularly with A. alternata, C. herbarum, P. decumbens and P. janthinellum. At 0.97 aw and 20 °C, there was no clear effect of the interacting species on OTA accumulation; in general E. amstelodami and Candida sp. seemed to stimulate OTA production, whereas T. harzianum and P. decumbens reduced it. Competing mycoflora acted as an additional control factor against OTA accumulation at 30 °C; but at 20 °C, where OTA production is optimal, this did not happen. Thus maintaining the temperature of grapes at or above 30 °C during dehydration may provide some control against OTA accumulation in grapes. |
---|---|
ISSN: | 0168-1605 1879-3460 |
DOI: | 10.1016/j.ijfoodmicro.2006.04.006 |