Loading…
Manufacturing cost model for planar 5 kWel SOFC stacks at Forschungszentrum Jülich
A study is performed on the manufacturing costs of planar Jülich Solid Oxide Fuel Cell (SOFC) stacks, based on anode-supported cells (ASC). The manufacturing of two ASC concepts with different design approaches (referred to as standard and light-weight) are evaluated on the basis of stacks that have...
Saved in:
Published in: | International journal of hydrogen energy 2020-03, Vol.45 (15), p.8015-8030 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A study is performed on the manufacturing costs of planar Jülich Solid Oxide Fuel Cell (SOFC) stacks, based on anode-supported cells (ASC). The manufacturing of two ASC concepts with different design approaches (referred to as standard and light-weight) are evaluated on the basis of stacks that have undergone performance and degradation testing. A bottom-up cost model for 5 kWel is constructed to estimate the costs at production volumes of 1 MWel, 10 MWel and 25 MWel per annum. The direct costs of manufacturing are estimated as 2737–1210 €kWel−1 for the standard design, and 2170–580 €kWel−1 for the light-weight design, depending on production volume. For the evaluated concepts, the material costs are estimated to be dominant over the other factors (at the 25 MWel per annum scale > 65%) which is in accordance with most previous studies. The effect of the different design types on the costs is discussed. The steel components are found to be the most cost-intensive, benefiting the light-weight design. Cost sensitivity analyses to manufacturing parameters, power density and degradation are performed, as well as a theoretical scenarios calculated based on low-cost steel type SS441 replacing the costly Crofer materials and co-sintering replacing sequential sintering. The results are compared to previous studies. Strategies for cost-saving are discussed based on 20 years of experience with stack building and testing in Jülich.
•Material costs identified as main cost-factor in the evaluated SOFC stack designs.•As demonstrated, costs can be decreased by applying light-weight design.•Improving contacting in light-weight design is promising for further cost reduction.•It is predicted that applying low-cost stainless steel with appropriate coating decreases cost. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2020.01.082 |