Loading…
Capacity assessment and cost analysis of geologic storage of hydrogen: A case study in Intermountain-West Region USA
Hydrogen is an integral component of the current energy transition roadmap to decarbonize the economy and create an environmentally-sustainable future. However, surface storage options (e.g., tanks) do not provide the required capacity or durability to deploy a regional or nationwide hydrogen econom...
Saved in:
Published in: | International journal of hydrogen energy 2023-03, Vol.48 (24), p.9008-9022 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen is an integral component of the current energy transition roadmap to decarbonize the economy and create an environmentally-sustainable future. However, surface storage options (e.g., tanks) do not provide the required capacity or durability to deploy a regional or nationwide hydrogen economy. In this study, we have analyzed the techno-economic feasibility of the geologic storage of hydrogen in depleted gas reservoirs, salt caverns, and saline aquifers in the Intermountain-West (I-WEST) region. We have identified the most favorable candidate sites for hydrogen storage and estimated the volumetric storage capacity. Our results show that the geologic storage of hydrogen can provide at least 72% of total energy consumption of the I-WEST region in 2020. We also calculated the capital and levelized costs of each storage option. We found that a depleted gas reservoir is the most cost-effective candidate among the three geologic storage options. Interestingly, the cushion gas type plays a significant role in the storage cost when we consider hydrogen storage in saline aquifers. The levelized costs of hydrogen storage in depleted gas reservoirs, salt caverns, and saline aquifers with large-scale storage capacity are approximately $1.15, $2.50, and $3.27 per kg of H2, respectively. This work provides essential guidance for the geologic hydrogen storage in the I-WEST region.
[Display omitted]
•Techno-economic analysis of hydrogen geologic storage in the Intermountain-West, US.•Promising sites for geologic hydrogen storage are identified.•The hydrogen storage capacity and energy demand are estimated.•H2 storage costs in different geologic formations are estimated and optimized. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2022.11.292 |