Loading…

Data-driven optimization of brittleness index for hydraulic fracturing

Evaluation of brittleness index (BI) is a fundamental principle of a hydraulic fracturing design. A wide variety of BI calculations often baffle field engineers. The traditional value comparison may also not make the best of BI. Moreover, it is often mixed up with the fracability in field applicatio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2022-11, Vol.159, p.105207, Article 105207
Main Authors: Hou, Lei, Ren, Jianhua, Fang, Yi, Cheng, Yiyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaluation of brittleness index (BI) is a fundamental principle of a hydraulic fracturing design. A wide variety of BI calculations often baffle field engineers. The traditional value comparison may also not make the best of BI. Moreover, it is often mixed up with the fracability in field applications, thus causing concerns. We, therefore, redefine fracability as the fracturing pressure under certain rock mechanical (mainly brittleness), geological and injecting conditions to clarify the confusion. Then, we propose a data-driven workflow to optimize BIs by controlling the geological and injecting conditions. The machine learning (ML) workflow is employed to predict the fracability (fracturing pressure) based on field measurement. Three representative ML algorithms are applied to average the prediction, aiming to restrict the interference of algorithm performances. The contribution of brittleness on pressure/fracability prediction by error analysis (rather than the traditional method of BI-value comparison) is proposed as the new criterion for optimization. Six classic BI correlations (mineral-, logging- and elastic-based) are evaluated, three of which are optimized for the derivation of a new BI using the backward elimination strategy. The stress ratio (ratio of minimum and maximum horizontal principal stress), representing the geological feature, is introduced into the derived calculation based on the independent variable analysis. The reliability of the new BI is verified by error analyses using data of eight fracturing stages from seven different wells. Approximately 40%–50% of the errors are reduced based on the new BI. The differences among the performances of algorithms are also significantly restrained. The new brittleness index provides a more reliable option for evaluating the brittleness and fracability of the fracturing formation. The machine learning workflow also proposes a promising application scenario of the BI for hydraulic fracturing, which makes more efficient and broader usages of the BI compared with the traditional value comparison.
ISSN:1365-1609
1873-4545
DOI:10.1016/j.ijrmms.2022.105207