Loading…

Multi-adjoint t-concept lattices

The t-concept lattice is introduced as a set of triples associated to graded tabular information interpreted in a non-commutative fuzzy logic. Following the general techniques of formal concept analysis, and based on the works by Georgescu and Popescu, given a non-commutative conjunctor it is possib...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2010-03, Vol.180 (5), p.712-725
Main Authors: Medina, J., Ojeda-Aciego, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The t-concept lattice is introduced as a set of triples associated to graded tabular information interpreted in a non-commutative fuzzy logic. Following the general techniques of formal concept analysis, and based on the works by Georgescu and Popescu, given a non-commutative conjunctor it is possible to provide generalizations of the mappings for the intension and the extension in two different ways, and this generates a pair of concept lattices. In this paper, we show that the information common to both concept lattices can be seen as a sublattice of the Cartesian product of both concept lattices. The multi-adjoint framework can be applied to this general t-concept lattice, and its usefulness is illustrated by a working example.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2009.11.018