Loading…

Ensemble strategies with adaptive evolutionary programming

Mutation operators such as Gaussian, Lévy and Cauchy have been used with evolutionary programming (EP). According to the no free lunch theorem, it is impossible for EP with a single mutation operator to outperform always. For example, Classical EP (CEP) with Gaussian mutation is better at searching...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2010-05, Vol.180 (9), p.1571-1581
Main Authors: Mallipeddi, R., Mallipeddi, S., Suganthan, P.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutation operators such as Gaussian, Lévy and Cauchy have been used with evolutionary programming (EP). According to the no free lunch theorem, it is impossible for EP with a single mutation operator to outperform always. For example, Classical EP (CEP) with Gaussian mutation is better at searching in a local neighborhood while the Fast EP (FEP) with the Cauchy mutation performs better over a larger neighborhood. Motivated by these observations, we propose an ensemble approach where each mutation operator has its associated population and every population benefits from every function call. This approach enables us to benefit from different mutation operators with different parameter values whenever they are effective during different stages of the search process. In addition, the recently proposed Adaptive EP (AEP) using Gaussian (ACEP) and Cauchy (AFEP) mutations is also evaluated. In the AEP, the strategy parameter values are adapted based on the search performance in the previous few generations. The performance of ensemble is compared with a mixed mutation strategy, which integrates several mutation operators into a single algorithm as well as against the AEP with a single mutation operator. Improved performance of the ensemble over the single mutation-based algorithms and mixed mutation algorithm is verified using statistical tests.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2010.01.007