Loading…

IDEA: Invariant defense for graph adversarial robustness

Despite the success of graph neural networks (GNNs), their vulnerability to adversarial attacks poses tremendous challenges for practical applications. Existing defense methods suffer from severe performance decline under unseen attacks, due to either limited observed adversarial examples or pre-def...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2024-10, Vol.680, p.121171, Article 121171
Main Authors: Tao, Shuchang, Cao, Qi, Shen, Huawei, Wu, Yunfan, Xu, Bingbing, Cheng, Xueqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the success of graph neural networks (GNNs), their vulnerability to adversarial attacks poses tremendous challenges for practical applications. Existing defense methods suffer from severe performance decline under unseen attacks, due to either limited observed adversarial examples or pre-defined heuristics. To address these limitations, we analyze the causalities in graph adversarial attacks and conclude that causal features are key to achieve graph adversarial robustness, owing to their determinedness for labels and invariance across attacks. To learn these causal features, we innovatively propose an Invariant causal DEfense method against adversarial Attacks (IDEA). We derive node-based and structure-based invariance objectives from an information-theoretic perspective. IDEA ensures strong predictability for labels and invariant predictability across attacks, which is provably a causally invariant defense across various attacks. Extensive experiments demonstrate that IDEA attains state-of-the-art defense performance under all five attacks on all five datasets. The implementation of IDEA is available at https://github.com/TaoShuchang/IDEA_repo.
ISSN:0020-0255
DOI:10.1016/j.ins.2024.121171