Loading…
Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending
Multi-layered Prepacked aggregate fibrous composite (MLPAFC) is a new type of concrete, which is prepared in two subsequent stages of aggregate-fibre skeleton prepacking and cementitious grouting. In this study, ten MLPAFC mixtures were prepared in three subsequent layers incorporating different con...
Saved in:
Published in: | Structures (Oxford) 2020-12, Vol.28, p.1502-1515 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-layered Prepacked aggregate fibrous composite (MLPAFC) is a new type of concrete, which is prepared in two subsequent stages of aggregate-fibre skeleton prepacking and cementitious grouting. In this study, ten MLPAFC mixtures were prepared in three subsequent layers incorporating different contents of four different types of steel fibres. Long and short hooked-end and crimped steel fibers were adopted with 3.0 and 1.5% dosages for the outer and interior layers, respectively. In-between the three MLPAFC layers, two layers of Glass Fiber Mesh (GFM) were inserted in five of the ten mixtures. The impact response of the MLPAFC mixtures was evaluated using two test methods. In the first, the ACI 544-2R repeated free-falling weight test was followed using disk specimens, while flexural free-falling weight on prism specimens was the second adopted impact test. Moreover, Weibull distribution was used to statistically analyse the discrepancies of the obtained experimental impact records. The impact tests results revealed that MLPAFC can absorb significantly high energy under falling weight impact due to its structure and the dual crack arresting activity of both steel fibers and GFM. The cracking number of impacts of MLPAFC cylindrical specimens without GFM was increased by approximately 530–870% compared reference specimens, while increment percentages reaching 1350% were recorded at failure stage. The impact resistance of MLPAFC prisms under flexural impact was noticeably improved, yet with lower percentages than cylindrical specimens. The insertion of intermediate GFMs let to additional developments in the impact strength of both cylindrical and prism specimens. |
---|---|
ISSN: | 2352-0124 2352-0124 |
DOI: | 10.1016/j.istruc.2020.10.001 |