Loading…

Recollement for perverse sheaves on real hyperplane arrangements

Consider the category of perverse sheaves on Cn smooth with respect to the stratification arising from a real hyperplane arrangement. We construct an algebra whose module category is equivalent to this category, building on work of Kapranov–Schechtman. We prove that the standard recollement of perve...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebra 2021-02, Vol.568, p.61-90
Main Author: Bapat, Asilata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Consider the category of perverse sheaves on Cn smooth with respect to the stratification arising from a real hyperplane arrangement. We construct an algebra whose module category is equivalent to this category, building on work of Kapranov–Schechtman. We prove that the standard recollement of perverse sheaves is equivalent to a well-known recollement for algebras. As an application of our results, we give a new description of the category of representations of the fundamental group of the complement of such a hyperplane arrangement. We also identify the modules associated to all simple perverse sheaves, that is, the intersection cohomology complexes. Finally, we generalise our results to W-equivariant perverse sheaves for the reflection arrangement of a finite Coxeter group W, extending work of Weissman. As an application, we identify the modules associated to the equivariant simple perverse sheaves.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2020.09.044