Loading…
2-Arc-transitive Cayley graphs on alternating groups
An interesting fact is that almost all the connected 2-arc-transitive nonnormal Cayley graphs on nonabelian simple groups with small valency or prime valency (provided solvable vertex stabilizers) are Cayley graphs on alternating groups An. This naturally motivates the study of 2-arc-transitive Cayl...
Saved in:
Published in: | Journal of algebra 2022-11, Vol.610, p.655-683 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An interesting fact is that almost all the connected 2-arc-transitive nonnormal Cayley graphs on nonabelian simple groups with small valency or prime valency (provided solvable vertex stabilizers) are Cayley graphs on alternating groups An. This naturally motivates the study of 2-arc-transitive Cayley graphs on An for arbitrary valency. In this paper, we characterize the automorphism groups of such graphs. In particular, we show that for a non-complete (G,2)-arc-transitive Cayley graph on An with G almost simple, the socle of G is either An+1 or An+2. We also construct the first infinite family of (An+2,2)-arc-transitive Cayley graphs on An. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1016/j.jalgebra.2022.07.025 |