Loading…
Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations
We devise second-order accurate, unconditionally uniquely solvable and unconditionally energy stable schemes for the nonlocal Cahn–Hilliard (nCH) and nonlocal Allen–Cahn (nAC) equations for a large class of interaction kernels. We present numerical evidence that both schemes are convergent. We solve...
Saved in:
Published in: | Journal of computational physics 2014-11, Vol.277, p.48-71 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We devise second-order accurate, unconditionally uniquely solvable and unconditionally energy stable schemes for the nonlocal Cahn–Hilliard (nCH) and nonlocal Allen–Cahn (nAC) equations for a large class of interaction kernels. We present numerical evidence that both schemes are convergent. We solve the nonlinear equations resulting from discretization using an efficient nonlinear multigrid method and demonstrate the performance of our algorithms by simulating nucleation and crystal growth for several different choices of interaction kernels. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2014.08.001 |