Loading…
Hermitian matrices of roots of unity and their characteristic polynomials
We investigate spectral conditions on Hermitian matrices of roots of unity. Our main results are conjecturally sharp upper bounds on the number of residue classes of the characteristic polynomial of such matrices modulo ideals generated by powers of (1−ζ), where ζ is a root of unity. We also prove a...
Saved in:
Published in: | Journal of combinatorial theory. Series A 2023-11, Vol.200, p.105793, Article 105793 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate spectral conditions on Hermitian matrices of roots of unity. Our main results are conjecturally sharp upper bounds on the number of residue classes of the characteristic polynomial of such matrices modulo ideals generated by powers of (1−ζ), where ζ is a root of unity. We also prove a generalisation of a classical result of Harary and Schwenk about a relation for traces of powers of a graph-adjacency matrix, which is a crucial ingredient for the proofs of our main results. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2023.105793 |