Loading…
Edge-signed graphs with smallest eigenvalue greater than −2
We give a structural classification of edge-signed graphs with smallest eigenvalue greater than −2. We prove a conjecture of Hoffman about the smallest eigenvalue of the line graph of a tree that was stated in the 1970s. Furthermore, we prove a more general result extending Hoffman's original s...
Saved in:
Published in: | Journal of combinatorial theory. Series B 2015-01, Vol.110, p.90-111 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a structural classification of edge-signed graphs with smallest eigenvalue greater than −2. We prove a conjecture of Hoffman about the smallest eigenvalue of the line graph of a tree that was stated in the 1970s. Furthermore, we prove a more general result extending Hoffman's original statement to all edge-signed graphs with smallest eigenvalue greater than −2. Our results give a classification of the special graphs of fat Hoffman graphs with smallest eigenvalue greater than −3. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1016/j.jctb.2014.07.006 |