Loading…
Unavoidable hypergraphs
The following very natural problem was raised by Chung and Erdős in the early 80's and has since been repeated a number of times. What is the minimum of the Turán number ex(n,H) among all r-graphs H with a fixed number of edges? Their actual focus was on an equivalent and perhaps even more natu...
Saved in:
Published in: | Journal of combinatorial theory. Series B 2021-11, Vol.151, p.307-338, Article 307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The following very natural problem was raised by Chung and Erdős in the early 80's and has since been repeated a number of times. What is the minimum of the Turán number ex(n,H) among all r-graphs H with a fixed number of edges? Their actual focus was on an equivalent and perhaps even more natural question which asks what is the largest size of an r-graph that can not be avoided in any r-graph on n vertices and e edges?
In the original paper they resolve this question asymptotically for graphs, for most of the range of e. In a follow-up work Chung and Erdős resolve the 3-uniform case and raise the 4-uniform case as the natural next step. In this paper we make first progress on this problem in over 40 years by asymptotically resolving the 4-uniform case which gives us some indication on how the answer should behave in general. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1016/j.jctb.2021.06.010 |