Loading…

Time analysis and entry–exit relation near planar turning points

The paper deals with canard solutions at very general turning points of smooth singular perturbation problems in two dimensions. We follow a geometric approach based on the use of C k -normal forms, centre manifolds and (family) blow up, as we did in (Trans. Amer. Math. Soc., to appear). In (Trans....

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2005-08, Vol.215 (2), p.225-267
Main Authors: De Maesschalck, P., Dumortier, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper deals with canard solutions at very general turning points of smooth singular perturbation problems in two dimensions. We follow a geometric approach based on the use of C k -normal forms, centre manifolds and (family) blow up, as we did in (Trans. Amer. Math. Soc., to appear). In (Trans. Amer. Math. Soc., to appear) we considered the existence of manifolds of canard solutions for given appropriate boundary conditions. These manifolds need not be smooth at the turning point. In this paper we essentially study the transition time along such manifolds, as well as the divergence integral, providing a structure theorem for these integrals. As a consequence we get a nice structure theorem for the transition equation, governing the canard solutions. It permits to compare different control manifolds and to obtain a precise description of the entry–exit relation of different canard solutions. Attention is also given to the special case in which the canard manifolds are smooth, i.e. when “formal” canard solutions exist.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2005.01.004