Loading…

A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results

In this paper we prove rigorous results on persistence of invariant tori and their whiskers. The proofs are based on the parameterization method of [X. Cabré, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana U...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2006-09, Vol.228 (2), p.530-579
Main Authors: Haro, A., de la Llave, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we prove rigorous results on persistence of invariant tori and their whiskers. The proofs are based on the parameterization method of [X. Cabré, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2) (2003) 283–328; X. Cabré, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2) (2003) 329–360]. The invariant manifolds results proved here include as particular cases of the usual (strong) stable and (strong) unstable manifolds, but also include other non-resonant manifolds. The method lends itself to numerical implementations whose analysis and implementation is studied in [A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, preprint, 2005; A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical implementation and examples, preprint, 2005]. The results are stated as a posteriori results. Namely, that if one has an approximate solution which is not degenerate, then, one has a true solution not too far from the approximate one. This can be used to validate the results of numerical computations.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2005.10.005