Loading…
Analytic smoothing of geometric maps with applications to KAM theory
We show that finitely differentiable diffeomorphisms which are either symplectic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-preserving or contact. We prove that the approximating functions are uniformly bounded on some...
Saved in:
Published in: | Journal of Differential Equations 2008-09, Vol.245 (5), p.1243-1298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that finitely differentiable diffeomorphisms which are either symplectic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-preserving or contact. We prove that the approximating functions are uniformly bounded on some complex domains and that the rate of convergence, in
C
r
-norms, of the approximation can be estimated in terms of the size of such complex domains and the order of differentiability of the approximated function. As an application to this result, we give a proof of the existence, the local uniqueness and the bootstrap of regularity of KAM tori for finitely differentiable symplectic maps. The symplectic maps considered here are not assumed either to be written in action-angle variables or to be perturbations of integrable systems. Our main assumption is the existence of a finitely differentiable parameterization of a maximal dimensional torus that satisfies a non-degeneracy condition and that is approximately invariant. The symplectic, volume-preserving and contact forms are assumed to be analytic. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2008.05.009 |