Loading…

Analytic smoothing of geometric maps with applications to KAM theory

We show that finitely differentiable diffeomorphisms which are either symplectic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-preserving or contact. We prove that the approximating functions are uniformly bounded on some...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2008-09, Vol.245 (5), p.1243-1298
Main Authors: González-Enríquez, A., de la Llave, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that finitely differentiable diffeomorphisms which are either symplectic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-preserving or contact. We prove that the approximating functions are uniformly bounded on some complex domains and that the rate of convergence, in C r -norms, of the approximation can be estimated in terms of the size of such complex domains and the order of differentiability of the approximated function. As an application to this result, we give a proof of the existence, the local uniqueness and the bootstrap of regularity of KAM tori for finitely differentiable symplectic maps. The symplectic maps considered here are not assumed either to be written in action-angle variables or to be perturbations of integrable systems. Our main assumption is the existence of a finitely differentiable parameterization of a maximal dimensional torus that satisfies a non-degeneracy condition and that is approximately invariant. The symplectic, volume-preserving and contact forms are assumed to be analytic.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2008.05.009