Loading…
Global subsonic Euler flows in an infinitely long axisymmetric nozzle
In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely lon...
Saved in:
Published in: | Journal of Differential Equations 2011-01, Vol.250 (2), p.813-847 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The results give a strictly mathematical proof to the assertion in Bers (1958)
[2]: there exists a critical value of the incoming mass flux such that a global subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less than the critical value. The existence of subsonic flow is obtained by the precisely a priori estimates for the elliptic equation of two variables. With the assumptions on the nozzle in the far fields, the asymptotic behavior can be derived by a blow-up argument for the infinitely long nozzle. Finally, we obtain the uniqueness of uniformly subsonic flow by energy estimate and derive the existence of the critical value of incoming mass flux. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2010.06.005 |