Loading…
Nonlinear stability of planar traveling waves in a chemotaxis model of tumor angiogenesis with chemical diffusion
We consider a simplified chemotaxis model of tumor angiogenesis, described by a Keller-Segel system on the two dimensional infinite cylindrical domain (x,y)∈R×Sλ, where Sλ is the circle of perimeter λ>0. The domain models a virtual channel where newly generated blood vessels toward the vascular e...
Saved in:
Published in: | Journal of Differential Equations 2020-03, Vol.268 (7), p.3449-3496 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a simplified chemotaxis model of tumor angiogenesis, described by a Keller-Segel system on the two dimensional infinite cylindrical domain (x,y)∈R×Sλ, where Sλ is the circle of perimeter λ>0. The domain models a virtual channel where newly generated blood vessels toward the vascular endothelial growth factor will be located. The system is known to allow planar traveling wave solutions of an invading type. In this paper, we establish the nonlinear stability of these traveling invading waves when chemical diffusion is present if λ is sufficiently small. The same result for the corresponding system in one-dimension was obtained by Li-Li-Wang (2014) [17]. Our result solves the problem remained open in Chae-Choi-Kang-Lee (2018) [3] at which only linear stability of the planar traveling waves was obtained under certain artificial assumption. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2019.09.061 |