Loading…
Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations
The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan almost periodicity, pseudo-periodicity, pseudo-rec...
Saved in:
Published in: | Journal of Differential Equations 2020-08, Vol.269 (4), p.3652-3685 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan almost periodicity, pseudo-periodicity, pseudo-recurrence, Poisson stability) of solutions for semi-linear stochastic equationdx(t)=(Ax(t)+f(t,x(t)))dt+g(t,x(t))dW(t)(⁎) with exponentially stable linear operator A and Poisson stable in time coefficients f and g. We prove that if the functions f and g are appropriately “small”, then equation (⁎) admits at least one solution which has the same character of recurrence as the functions f and g. We also discuss the asymptotic stability of these Poisson stable solutions. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2020.03.014 |