Loading…
Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity
In this work we prove local existence of strong solutions to the initial-value problem arising in one-dimensional strain-limiting viscoelasticity, which is based on a nonlinear constitutive relation between the linearized strain, the rate of change of the linearized strain and the stress. The model...
Saved in:
Published in: | Journal of Differential Equations 2020-11, Vol.269 (11), p.9720-9739 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we prove local existence of strong solutions to the initial-value problem arising in one-dimensional strain-limiting viscoelasticity, which is based on a nonlinear constitutive relation between the linearized strain, the rate of change of the linearized strain and the stress. The model is a generalization of the nonlinear Kelvin-Voigt viscoelastic solid under the assumption that the strain and the strain rate are small. We define an initial-value problem for the stress variable and then, under the assumption that the nonlinear constitutive function is strictly increasing, we convert the problem to a new form for the sum of the strain and the strain rate. Using the theory of variable coefficient heat equation together with a fixed point argument we prove local existence of solutions. Finally, for several constitutive functions widely used in the literature we show that the assumption on which the proof of existence is based is not violated. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2020.06.052 |