Loading…
Free boundary value problem for damped Euler equations and related models with vacuum
This paper is concerned with the local well-posedness for the free boundary value problem of smooth solutions to the cylindrical symmetric Euler equations with damping and related models, including the compressible Euler equations and the Euler-Poisson equations. The free boundary is moving in the r...
Saved in:
Published in: | Journal of Differential Equations 2022-06, Vol.321, p.349-380 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the local well-posedness for the free boundary value problem of smooth solutions to the cylindrical symmetric Euler equations with damping and related models, including the compressible Euler equations and the Euler-Poisson equations. The free boundary is moving in the radial direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity. However, the compressible Euler equations or Euler-Poisson equations with damping become a degenerate system at the moving boundary. By setting a suitable weighted Sobolev space and using Hardy's inequality, we successfully overcome the singularity at the center point and the vacuum occurring on the moving boundary, and obtain the well-posedness of local smooth solutions. We also summarize the recent related results on the free boundary value problem for the Euler equations with damping, compressible Euler equations and Euler-Poisson equations. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2022.03.014 |