Loading…

Spectral analysis of the semi-relativistic Pauli–Fierz hamiltonian

We consider a charged particle, spin 1 2 , with relativistic kinetic energy and minimally coupled to the quantized Maxwell field. Since the total momentum is conserved, the Hamiltonian admits a fiber decomposition as H ( P ) , P ∈ R 3 . We study the spectrum of H ( P ) . In particular we prove that,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2009-04, Vol.256 (7), p.2123-2156
Main Authors: Miyao, Tadahiro, Spohn, Herbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a charged particle, spin 1 2 , with relativistic kinetic energy and minimally coupled to the quantized Maxwell field. Since the total momentum is conserved, the Hamiltonian admits a fiber decomposition as H ( P ) , P ∈ R 3 . We study the spectrum of H ( P ) . In particular we prove that, for non-zero photon mass, the ground state is exactly two-fold degenerate and separated by a gap, uniformly in P, from the rest of the spectrum.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2008.09.014