Loading…

Spectral asymptotics for Laplacians on self-similar sets

Given a self-similar Dirichlet form on a self-similar set, we first give an estimate on the asymptotic order of the associated eigenvalue counting function in terms of a ‘geometric counting function’ defined through a family of coverings of the self-similar set naturally associated with the Dirichle...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2010-02, Vol.258 (4), p.1310-1360
Main Author: Kajino, Naotaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a self-similar Dirichlet form on a self-similar set, we first give an estimate on the asymptotic order of the associated eigenvalue counting function in terms of a ‘geometric counting function’ defined through a family of coverings of the self-similar set naturally associated with the Dirichlet space. Secondly, under (sub-)Gaussian heat kernel upper bound, we prove a detailed short time asymptotic behavior of the partition function, which is the Laplace–Stieltjes transform of the eigenvalue counting function associated with the Dirichlet form. This result can be applicable to a class of infinitely ramified self-similar sets including generalized Sierpinski carpets, and is an extension of the result given recently by B.M. Hambly for the Brownian motion on generalized Sierpinski carpets. Moreover, we also provide a sharp remainder estimate for the short time asymptotic behavior of the partition function.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2009.11.001