Loading…
Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary
We construct a four-parameter family of Markov processes on infinite Gelfand–Tsetlin schemes that preserve the class of central (Gibbs) measures. Any process in the family induces a Feller Markov process on the infinite-dimensional boundary of the Gelfand–Tsetlin graph or, equivalently, the space of...
Saved in:
Published in: | Journal of functional analysis 2012-07, Vol.263 (1), p.248-303 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a four-parameter family of Markov processes on infinite Gelfand–Tsetlin schemes that preserve the class of central (Gibbs) measures. Any process in the family induces a Feller Markov process on the infinite-dimensional boundary of the Gelfand–Tsetlin graph or, equivalently, the space of extreme characters of the infinite-dimensional unitary group U(∞). The process has a unique invariant distribution which arises as the decomposing measure in a natural problem of harmonic analysis on U(∞) posed in Olshanski (2003) [44]. As was shown in Borodin and Olshanski (2005) [11], this measure can also be described as a determinantal point process with a correlation kernel expressed through the Gauss hypergeometric function. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2012.03.018 |