Loading…
Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives
In this paper, we are concerned with Cauchy problems of fractional differential equations with Riemann–Liouville fractional derivatives in infinite-dimensional Banach spaces. We introduce the notion of fractional resolvent, obtain some its properties, and present a generation theorem for exponential...
Saved in:
Published in: | Journal of functional analysis 2012-07, Vol.263 (2), p.476-510 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we are concerned with Cauchy problems of fractional differential equations with Riemann–Liouville fractional derivatives in infinite-dimensional Banach spaces. We introduce the notion of fractional resolvent, obtain some its properties, and present a generation theorem for exponentially bounded fractional resolvents. Moreover, we prove that a homogeneous α-order Cauchy problem is well posed if and only if its coefficient operator is the generator of an α-order fractional resolvent, and we give sufficient conditions to guarantee the existence and uniqueness of weak solutions and strong solutions of an inhomogeneous α-order Cauchy problem. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2012.04.011 |