Loading…
Convergence of solutions for the fractional Cahn–Hilliard system
This paper deals with the Cauchy–Dirichlet problem for the fractional Cahn–Hilliard equation. The main results consist of global (in time) existence of weak solutions, characterization of parabolic smoothing effects (implying under proper condition eventual boundedness of trajectories), and converge...
Saved in:
Published in: | Journal of functional analysis 2019-05, Vol.276 (9), p.2663-2715 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the Cauchy–Dirichlet problem for the fractional Cahn–Hilliard equation. The main results consist of global (in time) existence of weak solutions, characterization of parabolic smoothing effects (implying under proper condition eventual boundedness of trajectories), and convergence of each solution to a (single) equilibrium. In particular, to prove the convergence result, a variant of the so-called Łojasiewicz–Simon inequality is provided for the fractional Dirichlet Laplacian and (possibly) non-analytic (but C1) nonlinearities. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2019.01.006 |