Loading…
Asymptotic dynamic for Dipolar Quantum Gases below the ground state energy threshold
We consider the Gross-Pitaevskii equation describing a dipolar Bose-Einstein condensate without external confinement. We first consider the unstable regime, where the nonlocal nonlinearity is neither positive nor radially symmetric and standing states are known to exist. We prove that under the ener...
Saved in:
Published in: | Journal of functional analysis 2019-09, Vol.277 (6), p.1958-1998 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the Gross-Pitaevskii equation describing a dipolar Bose-Einstein condensate without external confinement. We first consider the unstable regime, where the nonlocal nonlinearity is neither positive nor radially symmetric and standing states are known to exist. We prove that under the energy threshold given by the ground state, all global in time solutions behave as free waves asymptotically in time. The ingredients of the proof are variational characterization of the ground states energy, a suitable profile decomposition theorem and localized virial estimates, enabling to carry out a Concentration/Compactness and Rigidity scheme. As a byproduct we show that in the stable regime, where standing states do not exist, any initial data in the energy space scatters. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2019.04.005 |