Loading…
Continuous valuations on the space of Lipschitz functions on the sphere
We study real-valued valuations on the space of Lipschitz functions over the Euclidean unit sphere Sn−1. After introducing an appropriate notion of convergence, we show that continuous valuations are bounded on sets which are bounded with respect to the Lipschitz norm. This fact, in combination with...
Saved in:
Published in: | Journal of functional analysis 2021-02, Vol.280 (4), p.108873, Article 108873 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study real-valued valuations on the space of Lipschitz functions over the Euclidean unit sphere Sn−1. After introducing an appropriate notion of convergence, we show that continuous valuations are bounded on sets which are bounded with respect to the Lipschitz norm. This fact, in combination with measure theoretical arguments, will yield an integral representation for continuous and rotation invariant valuations on the space of Lipschitz functions over the 1-dimensional sphere. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2020.108873 |